Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5
نویسندگان
چکیده
The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI) genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.
منابع مشابه
Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.
Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans str...
متن کاملEffect of Cell Wall, Cytoplasmic Fraction and Killed-Candida albicans on Nitric Oxide Production by Peritoneal Macrophages from BALB/c Mice
Objective(s) The fractions of Candida albicans have been used as an immunomodulator. The present work assessed the effect of different fractions of C. albicans on nitric oxide (NO) production by mice peritoneal macrophages. Materials and Methods Cell wall and cytoplasmic fractions of C. albicans ATCC 10321 strain were extracted. Mice peritoneal macrophages were purified and cultured. Differen...
متن کاملThe Effects of Candida Albicans Cell Wall Protein Fraction on Dendritic Cell Maturation
Back ground: Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, β glucans and chitins, and proteins that partially modulate the h...
متن کاملComparison of cell wall proteins in putative Candida albicans & Candida dubliniensis by using modified staining method & SDSPAGE
Background: Candida species are among the most common causes of opportunistic fungal diseases. Among Candida species, Candida albicans is responsible for most infections. Having many strains, C. albicans is very polymorph. C. dubliniensis is very similar to albicans species both morphologically and physiologically. For an infection to occur, cell wall proteins play an important role as they en...
متن کاملDrosophila melanogaster Thor and response to Candida albicans infection.
We used Drosophila melanogaster macrophage-like Schneider 2 (S2) cells as a model to study cell-mediated innate immunity against infection by the opportunistic fungal pathogen Candida albicans. Transcriptional profiling of S2 cells coincubated with C. albicans cells revealed up-regulation of several genes. One of the most highly up-regulated genes during this interaction is the D. melanogaster ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Pathogens
دوره 2 شماره
صفحات -
تاریخ انتشار 2006